对于使用高性能机器学习算法通常不透明的决策,人们越来越担心。用特定于领域的术语对推理过程的解释对于在医疗保健等风险敏感领域中采用至关重要。我们认为,机器学习算法应该可以通过设计来解释,并且表达这些解释的语言应与域和任务有关。因此,我们将模型的预测基于数据的用户定义和特定于任务的二进制函数,每个都对最终用户有明确的解释。然后,我们最大程度地减少了在任何给定输入上准确预测所需的预期查询数。由于解决方案通常是棘手的,因此在事先工作之后,我们根据信息增益顺序选择查询。但是,与以前的工作相反,我们不必假设查询在有条件地独立。取而代之的是,我们利用随机生成模型(VAE)和MCMC算法(未经调整的Langevin)来选择基于先前的查询 - 答案的输入的最有用的查询。这使得在线确定要解决预测歧义所需的任何深度的查询链。最后,关于视觉和NLP任务的实验证明了我们的方法的功效及其优越性比事后解释的优势。
translated by 谷歌翻译
Estimating the probability of failure for complex real-world systems using high-fidelity computational models is often prohibitively expensive, especially when the probability is small. Exploiting low-fidelity models can make this process more feasible, but merging information from multiple low-fidelity and high-fidelity models poses several challenges. This paper presents a robust multi-fidelity surrogate modeling strategy in which the multi-fidelity surrogate is assembled using an active learning strategy using an on-the-fly model adequacy assessment set within a subset simulation framework for efficient reliability analysis. The multi-fidelity surrogate is assembled by first applying a Gaussian process correction to each low-fidelity model and assigning a model probability based on the model's local predictive accuracy and cost. Three strategies are proposed to fuse these individual surrogates into an overall surrogate model based on model averaging and deterministic/stochastic model selection. The strategies also dictate which model evaluations are necessary. No assumptions are made about the relationships between low-fidelity models, while the high-fidelity model is assumed to be the most accurate and most computationally expensive model. Through two analytical and two numerical case studies, including a case study evaluating the failure probability of Tristructural isotropic-coated (TRISO) nuclear fuels, the algorithm is shown to be highly accurate while drastically reducing the number of high-fidelity model calls (and hence computational cost).
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
机器学习潜力是分子模拟的重要工具,但是由于缺乏高质量数据集来训练它们的发展,它们的开发阻碍了它们。我们描述了Spice数据集,这是一种新的量子化学数据集,用于训练与模拟与蛋白质相互作用的药物样的小分子相关的潜在。它包含超过110万个小分子,二聚体,二肽和溶剂化氨基酸的构象。它包括15个元素,带电和未充电的分子以及广泛的共价和非共价相互作用。它提供了在{\ omega} b97m-d3(bj)/def2-tzVPPD理论水平以及其他有用的数量(例如多极矩和键阶)上计算出的力和能量。我们在其上训练一组机器学习潜力,并证明它们可以在化学空间的广泛区域中实现化学精度。它可以作为创建可转移的,准备使用潜在功能用于分子模拟的宝贵资源。
translated by 谷歌翻译
我们提出了一种隐含的可能性方法,可以通过分散目录数据量化宇宙学信息,并作为图形组装。为此,我们使用模拟暗物质光环目录探索宇宙学的推断。我们采用最大化神经网络(IMNN)的信息来量化Fisher信息提取,这是图表的函数。我们a)在无噪声限制下,模块图结构对基础宇宙学具有高度敏感性,b)表明,通过比较传统统计,网络自动结合质量和聚类信息,c)证明图形神经网络仍然可以提取信息。当目录受到嘈杂的调查削减时,d)说明了如何将非线性IMNN摘要用作贝叶斯隐性可能性推断的渐近最佳压缩统计。我们在两点相关功能上,我们将$ \ omega_m,\ sigma_8 $参数约束降低了42倍,并证明网络自动组合质量和聚类信息,将关节$ \ omega_m,\ sigma_8 $参数约束减少42倍。 。这项工作利用了JAX中的图形数据的新IMNN实现,该实现可以利用数值或自动差异性。我们还显示,IMNNS成功地压缩了远离拟合网络的基准模型的模拟,这表明基于目录的分析中$ n $ point统计的有希望的替代方法。
translated by 谷歌翻译
现在,人工智能(AI)可以自动解释医学图像以供临床使用。但是,AI在介入图像中的潜在用途(相对于参与分类或诊断的图像),例如在手术期间的指导,在很大程度上尚未开发。这是因为目前,使用现场分析对现场手术收集的数据进行了事后分析,这是因为手术AI系统具有基本和实际限制,包括道德考虑,费用,可扩展性,数据完整性以及缺乏地面真相。在这里,我们证明从人类模型中创建逼真的模拟图像是可行的替代方法,并与大规模的原位数据收集进行了补充。我们表明,对现实合成数据的训练AI图像分析模型,结合当代域的概括或适应技术,导致在实际数据上的模型与在精确匹配的真实数据训练集中训练的模型相当地执行的模型。由于从基于人类的模型尺度的合成生成培训数据,因此我们发现我们称为X射线图像分析的模型传输范式(我们称为Syntheex)甚至可以超越实际数据训练的模型,因为训练的有效性较大的数据集。我们证明了合成在三个临床任务上的潜力:髋关节图像分析,手术机器人工具检测和COVID-19肺病变分割。 Synthex提供了一个机会,可以极大地加速基于X射线药物的智能系统的概念,设计和评估。此外,模拟图像环境还提供了测试新颖仪器,设计互补手术方法的机会,并设想了改善结果,节省时间或减轻人为错误的新技术,从实时人类数据收集的道德和实际考虑方面摆脱了人为错误。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
TRISTRUCCUCTIONATIOPIC(TRISO)涂层颗粒燃料是强大的核燃料,并确定其可靠性对于先进的核技术的成功至关重要。然而,Triso失效概率很小,相关的计算模型很昂贵。我们使用耦合的主动学习,多尺度建模和子集模拟来估计使用几个1D和2D模型的Triso燃料的故障概率。通过多尺度建模,我们用来自两个低保真(LF)模型的信息融合,取代了昂贵的高保真(HF)模型评估。对于1D TRISO模型,我们考虑了三种多倍性建模策略:仅克里格,Kriging LF预测加克里格校正,深神经网络(DNN)LF预测加克里格校正。虽然这些多尺度建模策略的结果令人满意地比较了从两个LF模型中使用信息融合的策略,但是通常常常称为HF模型。接下来,对于2D Triso模型,我们考虑了两个多倍性建模策略:DNN LF预测加克里格校正(数据驱动)和1D Triso LF预测加克里格校正(基于物理学)。正如所预期的那样,基于物理的策略一直需要对HF模型的最少的呼叫。然而,由于DNN预测是瞬时的,数据驱动的策略具有较低的整体模拟时间,并且1D Triso模型需要不可忽略的模拟时间。
translated by 谷歌翻译
制定了具有机器学习模拟(骆驼)项目的宇宙学和天体物理学,通过数千名宇宙的流体动力模拟和机器学习将宇宙学与天体物理学结合起来。骆驼包含4,233个宇宙学仿真,2,049个n-body和2,184个最先进的流体动力模拟,在参数空间中采样巨大的体积。在本文中,我们介绍了骆驼公共数据发布,描述了骆驼模拟的特性和由它们产生的各种数据产品,包括光环,次麦,银河系和空隙目录,功率谱,Bispectra,Lyman - $ \ Alpha $光谱,概率分布函数,光环径向轮廓和X射线光子列表。我们还释放了超过骆驼 - 山姆的数十亿个星系的目录:与Santa Cruz半分析模型相结合的大量N身体模拟。我们释放包含350多个Terabytes的所有数据,并包含143,922个快照,数百万光环,星系和摘要统计数据。我们提供有关如何访问,下载,读取和处理数据AT \ URL {https://camels.readthedocs.io}的进一步技术详细信息。
translated by 谷歌翻译
大多数深度加强学习(DRL)的方法试图一次解决单一任务。因此,大多数现有的研究基准组成包括具有普通接口,但在其感知特征,目标或奖励结构中重叠的单独游戏或套房。促进培训代理人的知识转移(例如,通过多任务和元学习),需要更多的环境套件,提供具有足够共同的可配置任务,以共同研究待研究。在本文中,我们提供了Meta Arcade,该工具可以轻松定义和配置共享公共视觉效果,状态空间,动作空间,游戏组件和评分机制的自定义2D街机游戏。元拱门与现有环境不同,因为任职性共性和可配置性都优先考虑:可以从公共元素构建整组游戏,并且这些元素可通过暴露参数调节。我们包括一套24个预定义的游戏,共同说明了该框架的可能性,并讨论如何为研究应用程序配置这些游戏。我们提供了几个实验,说明了可以使用Meta Arcade如何使用,包括预定义游戏的单项任务基准,以设定的时间表更改游戏参数的示例课程的方法,以及游戏之间的转移学习探索。
translated by 谷歌翻译